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PERIODIC 

A nonautonomous periodic piecewise-linear system of second order equations 
in the theory of phase sync~o~zation is considered. Boundaries of the region 
of existence of a rough homoclinal curve are determined in an explicit form. 

The nature of the complex structure change when moving through these boun- 
daries is indicated. 

In the investigation of specific dynamic systems that are higher than two-dimensional, 
one of the difficult problems is that of analyzing systems of complex structure such as 

systems with a denumerable set of periodic motions. Interest in such systems is in many 
respects associated with the problem of stochastic motions of dynamic systems El]. Me- 

thods of complex structure determination which were used in [1- 141 are as foollows : 
(a) direct analysis of solutions [9, 101 including numerical methods Eli, 123; (b) the to- 
pological method in dissipative systems [13 J ; (c) methods of symbolic dynamics in con- 
servative systems [14]; (d) reduction to circle mapping [1], and (e) the determination 

of the rough (as well as nonrough) homoclinal curve [2 - 31. 

1. Stotament of the problem, Brrfc ro$ult#, We consider the system 
of equations of the theory of phase synchronization [6] of the form (1.1) specified in a 

nonautonomous cylindrical phase space G in the parameter region D 

9,’ = Y, Y’ = y - (A + ~~‘(~))Y - F (9) + Hz (4 (1.1) 

h (t) = sin tit, F (cp) = i- ‘p/ n, cp (mod 23t) (1.2) 

G = cp (mod 2n), t mod 

D = {h > 0, a > 0, b > 0, w > 0, yj 

Particular attention is given to the question of existence of complex structure ; the 
existence and bifurcation of the denumerable number of periodic motions of the (P, Q)- 
type, i.e. of periodic motions contained in G during time pt after a number of revo- 

lutions Q > 0 with respect to 9 (p, 4 are integers) is considered. 

We determine the region d+ of parameters of system (1.1) that corresponds to the ex- 

istence of the hom~~nal curve which according to [15, 3.61 guarantees the presence of 
structure 

d+: I Y - YI, (L 4 I < 6 (1.3) 

b 
E= 

n T/As + 0%2 ’ 
0=4+-I_, 

(1.4) 
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When in the autonomous system (1.1) b = 0, function Y = y0 (A, a) corresponds to 
the bifurcation of the separatrix loop of that system saddle, which envelops the upper 
semicylinder. 

In region d, the complex structure is determined by the denumerable set of groups of 
periodic motions of the (p, q) -type (q = 1, 2, ,..), each group consistsof adenumerable 
number of periodic motions (p*, q) of the (p* + 1, q) -types, The complex structure does 
not vanish at exit from region d+ with the change of parameters across the boundary y+ 
(when o < 0) and y_ (when u > 01, where y+ = YO (A, a) i- e and y- = y. (?*, U) - 
E, but changes at the boundary, and is then determined by the denumerable set of 

groups of (p, (I) -type periodic motions (q = 1,2,...). Each of these consists by then of 
a finite number of periodic motions of the (~1, q), (ps, q), . . ., (pi;, q)-types. 

In the language of symbolic sequencies generated by two images T and L on the 
local and global pieces of the extended region [16] of the homoclinal curve this has the 
following meaning. When the homoclinal curve of periodic sequences . . . TfzLT6... 
LTzkLTh ,., vanishes with one and the same number of operators L , the period gets a 
finite number ( jl, iz, . - ., ik are finite). The denumerability of periodic sequencies is 

obtained owing to the denumerability of the number of periods with a different number 
L in each period. 

Farther away from the boundary y+ (e < 0) or y_ fa > 0) the complex structure vani- 
shes. At the exit from region d+ through another part of boundaries v+ (o > 0) and ?_(a < 
0) the complex structure also vanishes (at the reserve passage an ” ,Q -explosion” takes 

place). The existence of complex structures and their bifurcation was obtained here with 
the use of methods (a) and (e) described above. 

System (1.1) contains in addition to the described bifurcations also others similar to 
those obtained in [S, 71 which determine the change of the complex structure with per& 
odic motions of the (p, -4) “type (reverse rotation with respect to cp) and the (p, 0) - 
type (oscillatory). 

Finally, an estimate is given of the capture region of the phase synchronization system 
which corresponds to the global stability of system (1.1). 

8. Supplem8nt~~y definition of ryrtrm (1, 1). For solving this system 
we supplement its definition at discontinuity points of function F (q) by passing to limit 
v-0 

1c’(qJ)l (ply9 
-i 

TPE (- v, VI, 

w-cp)/(JI---V). cPcEt4J,2fi--Y], 
o<v<n (2.1) 

We assume that the forced periodic saddle motion of system (1. l), (2.1) does not extend 
beyond the boundaries of region&, 2% - v) for v E (0,nf. For system (1. I) this implies 
that the limit inequality e Q min { 1- y,tl _1- y} (2.2) 
is satisfied, 

As the result of passing to limit of v -) 0 ) we obtain that along section (0, 2n~ solu- 
tions of system (1.9, (1.2) are of the form 

where 
41 = C@ + Cse*2t + A sin 6rt + B co9 wt + rc (i- y), y = tp (2.3) 

bA 
%a 

obo 
=+(“rt~u2+4/4 A=- A2+&$ ) B= Aa+w2aa (2.4) 

The joining of points cp E 0 and cp = 2n is carried out as follows: 
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1) if cp (4 - 0, to) = 2n -0 and Y (tx- 0, t,,) = yl > 2a, the solution is extended 

so that cp (t, tl) = + 0 and Y @I, tJ = Y (+O, t+-2~; 

2) if 9, (+O, to) = + 0 and Y (tl -0, t,,) < -2a, the solution is extended so that 

cp (6, a) = Zn-0 and Y (tr, tI) = Y (t,-0, to) + 2~; 
3) if cp (tl -0, to) = 2x -0(+ 0) and j Y (t,-0, to) 1% 2a, the solution is extended 

by motions of the form 9, = 0 and 9 = R (t) which within the finite time t* approach 
thelimitmotion tp,=Oand yr 0 that represents a steady periodic motion. 

8, Thcl togfen of exirtencs of tough homoclinrl Curve, According 
to Poincare”‘s definition a homoclinal curve is a doubly asymptotic trajectory to a peri- 
odic saddle motion, The homoclinal curve is obviously the intersection of separatrix 

manifolds of stable and unstable periodic saddle motion. If such intersection is transver- 

sal, the homoclinalcurveis called rough [15, IS] and in the opposite case nonrough C19J. 
Let us determine the conditions of existence of a rough homoclinal curve of the peri- 

odic saddle motion of system (1. l), (1.2) in the region ‘p~(O,2n) of the form (2.3) 

(C,= c, =O) dq* cp’=Asinot+Bcosot+n(1-y), y*=x (3.1) 

Equations of the stable and unstable separatrix surfaces W+ and W- are of the form 

w+: Y = Y*(f) + 8, (9, - q)*(t) - 2n) (3*9) 

w”: Y = Y*(t) $ 81 (a, - ‘p* ft)) 

(sr corresponds to the plus sign in (2.4) ). Manifolds W+ and W- are extended at tran - 
sition through ‘p = 2~ by solutions (2.3) in conformity with supplemental procedure de- 
scribed above, 

Let l+ and I- be the curves of intersection of surfaces n” and W- with the plane 

cp=2n+0 inthe h p ase space G. The relative position of surface W+ and W- rela- 

tive to each other is defined by the relative position of curves I+ and l-. Intersection 
points of curves I+ and l- correspond to the homoclinal curve of system (1.1). Let us 

denote the equations of the curves I+ and 2” by Y” (t) and y' (4 , respectively. The 

condition of existence of a simple root of equation 

Y+ (t) - y- (t) = 0 (3‘ 3) 

is equivalent to the condition of existence of a rough homoclinal curve. The substitution 

of cp = 2n into the first and second of Eqs. (3.2) yields, respectively, funCtiOnS Y+ ft), 

and y'(t) in the region of parameters dl 

I 

b u’wz + sr2 
X(*+V)--‘yrA”+&& >2a I (3.4) 

which satfsfy the inequality g-(t) > 2a, Then, assuming that condition (3.4) is satisfied 

below,from the supplemental process we obtain Y- (t) = Y- (t) -2a. AS the mlt (3.3) 

is transformed into an equation of the form 

which has two simple roots in a period when inequalities (1.3) are satisfied. Using the 
Neimark-Shil’nikov theorem [XI, 163 (the results of [15, 163 and also [19] are readily 
transferable to the case of joined systems [ZO]) we obtain the following statement. 
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Lemma 1. In the parameter region d+ system (1.1) contains a denumerable number 

of sets (q = 1,2, . . .) each of which consists of a denumerable number of periodic mo- 

tions of the (p, q) -type (q is fixed, p = 1, 2, . . .), which means that it has a complex 

structure. 

At the boundary of region d, (( 1.3) becomes an equality) the tangency of manifolds 
w+ and W- is of the quadratic kind. Furthermore the product of multipliers of the pe- 

riodic saddle motion [19] satisfies the inequalities exp (sr + s&z -i < O(> 0) when 
a<0 (u>O). 

Thus the conditions of the Gavrilov-Shil’nikov theorem [19], according to which the 
complex structure vanishes at transition through boundaries . y = y_ (a < 0) and y = 

y+ (a ) 0) and is maintained at transition through boundaries y = y_ (u :> 0) and Y = 
y+ (a < 0) are satisfied, although in that case the intersection of w+ and W- vanishes. 

Hence the following statement is valid. 
Lemma 2. There exists a p. dependent on parameters such thatsystem (1.1) has a 

complex structure in region 
Y+ + p > y > *r’+ (o < 3), y- - p < y f Y- (o > 0) (3.6) 

4. Changes of the complex structure. Let us elucidate the changes which 
the complex structure undergoes at transition through the boundaries y = y_ (u > 0) and 

y = y+ (a < 0). For this we shall prove the following lemma. 
Lemma 3. System (1.1) can have a denumerable number of periodic motions (p, 

q) of the fixed- q type only in the region of existence of the homoclinal curve, 

P r o o f . We denote solutions (2.3) in which C,,, are expressed in terms of input con- 
ditions by formulas 

C. =1--i)’ s2_ {(r/o - &J COS @to + Bo sin it,) + (4.1) 
* 

(nsi)-1 [CPCI - Asinot,-~cosot,-~((1-~)]}, i=i, 2 

by cp = c~ (t, rot ‘PO, YO) and Y = Y (t, to, (PO, YO? 
The conditions of existence of periodic motions of the (p, q) - type are of the form 

Q, ($+r* ti, OV Yi -2a signi) = 2n (4.2) 
(sign0 = 0) 

y ($+r, ri, O* Yi -2a signi) = yi+i 

i = 0, 1,. . ., q --1, t,=t,+pz T=$ ( ( 1 \ Y, ‘= Yo + 2fz 

System (4.2) consists of 2q equations in 2q unknown ti and yi (i = Y, 1, ***,Q -i). 

The form of functions in (4,2) (see (2.3) and (4.1)) implies that that system can have 
a denumerable number of solutions only when it has at least one solution, if only for one 
Ati ---f 00 (i > 0). Setting in (4.2), for example, At1 -, 00, we obtain the system ofequa- 

tions of the form 
2&--a/n) 

P 

sz - Sl c Qi, (4.3) 
j=l 

2(S1--a/n) 
Q 

s1- s2 c Q,i” 
i=l 

Qij = .',;zm exp I-- s1 (ti - tj)]; x = s2 , 
I I **1 

At, = ti - ti_r 
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(If other Ati --f 00, the corresponding Qfj vanish). 
Taking into account the boundedness of the left-hand side of (4.3), we obtain in the 

case of ah < 1 the necessary conditions of solution (4.3) I y - y,, (h, a) 1 <E which is 

the same as the condition of existence of a rough homoclinal curve (1.3). The lemma 
is proved. 

From Lemmas 2 and 3 follows the theorem. 
Theorem. In the parameter region (3.6) system (1.1) has a complex structure that 

is formed by the denumerable number of sets of periodic motions of the (P, 9) -type 
(4 = 1, 2, . . .) each of which consists of a finite number of periodic motions (T is fixed 
and p is finite). 

Vanishing of the complex structure at exit from region (3.6) with the change of Y is 

associated with the vanishing of solutions of the system of Eqs. (4.3) of an infinite (de- 

numerable) order when q - 00. 
As an example, we consider the variation of the number of periodic solutions of the 

(p, 1) -type produced by the variation of parameters. 
If q’ = 1 system (4.2) after elimination of ?J~ assumes the form of equation 

8 sin (wtO - a) = y + 
,a + n /n) (,W - (WP ) - (S1 + +) (e(%+%):P i 1) 

(Sr - S2) (@‘p - 1) (+rp - 1) (4.4) 

Passing in (4.4) to limit p -) co, which means that rr = to + pr - CO, and obtaining 

the roots of the derived equation, we find that the number of periodic motions of the 

(P, 1) -type of system (1.1) is denumerable in region 01, (see (1.3) ), finite in region 

1>y>y+(a<n~),y<y_(a>nh),andthatinregion y<y_(a<nh),l>y> 
Yt (a > nh) the system has no such motions. 

6. Other Btructure:. The invariance of system (1,l) with respect to the sub- 
stitutions ‘p -+ - (p, y - - y, y -+ - Y, r - r + 31: / 0 results in a symmetric subdivi- 
sion of the parameter space relative to y = 0. In particular, region cl_ of the form d-: 

-yt (a, a) < y < - y- (A, a) which is 
symmetric to d+ and corresponds to the com- 
plex structure formed by the denumerable 
set of periodic motions of the (P,- q) -type. 
Since for small a region d+ (d_) encroaches 
on region y < 0 (>O), there exists region 
do = d+ n d-which is determined by the 
inequalities do: -y_ > y > y-, at whose 

points the upper and lower pairs of separat- 
rix manifolds intersect. Hence in region do 

each of the two unstable intersect each of 

Fig. 1 
the two stable separatrix surfaces that con- 
stitute W- and TV+. This implies that a 

complex structure formed by the denumerable set of periodic motions of the (P, q), 

h-q) and (p, 0) -type corresponds to region do 
Regions d,, d_ and do are shown in Fig. 1 in the plane (h, y) for a = 0 . GLOSS SeC- 

tions t = const of the manifolds W- and W+ which correspond to these regions appear 
in Fig. 2. 

The estimates of the parameter regions given in [S], and also the symmetryofsystem 
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(1.1) with respect to substitutions y - - y, l+ - t - a/o, h - - 5, a ‘-t - a, 

yields a fairly complete picture of subdivision of the parameter space. Below we present 
only the information related to the region of global stability of system (1. l), which in the 

theory of phase synchronization is called [5] the capture region. 

6, The capture region, In the autonomous case of b = 0 the capture region 

da of system (1.1) is determined for u < 0 by the bifurcation of curve y = yo (A, a) 
(see (1.3 I) that corresponds to the existence of separatrix loop which envelops the up- 

per semicylinder, and when o > 0 by the bifurcation of curve y = y* (h, a) that cor- 

responds to the existence of a binary cycle which satisfies the condition y* (h, a) = 

YO (h, a) for (I = 0 so that da = { 1 y I< y. (a < 0), 1 y 1 <y* (a > 0)). (Function y*(& 
a) is the solution of the system of transcendental equations presented in [21, 221). 

Fig. 2 

According to the above investigation the capture region of the nonautonomous System 

(1.1) for which the solution ‘p = 0 at the joint attracts trajectories of the system except 

those lying on W+, is determined for CT < 0 by the curve y_, i.e. dn = (1 Y I < Y- (0 < 
O)),and for IJ > 0, satisfies according to [6] the estimate dn 3 d* = {I Y I < Y* - b) 
The estimate of the parameter region in [6] for whose points system (1.1) contains at 

least one periodic motion of the (p, q) -type (q > 0) when u > 0 is of the form Y > Pi- 
b. Hence the exact boundary of the capture region y= yr, satisfies for u > 0 the in- 
equalities 

Yr, - b < YL < min (r* + b, v-1 

and corresponds to bifurcation of the origination of periodic motions of the (JJ, q) -type 
similar to the bifurcation of the binary cycle in the autonomous case b = 0. The region 

of existence of the homoclinal curve d+ is divided by curve (I = 0 into two parts. One 

of these, d+ (a < 0) borders on the capture region and, according to [5], is a region of 

quasi-capture, while the second d, (a > 0) is separated from region dn by the region 
lying between the bifurcation curves y_ and ‘ye and, consequently, is not a region ofquasi- 

capture. 
REFERENCES 

1. Zaslavskii, G. M., Statistical Irreversibility in Nonlinear Systems. Moscow, 
“Nauka”, 1973. 

2. Mel’nikov, V. K. , On the stability of the center at time-periodic perturbations. 
Tr. Mosk. Mathem. Obshch., Vol. 12, 1963. 

3. Cherry, T. M., Asymptotic solutions of analytic Hamiltonian systems. L. Diff. 
Equat., Vol. 4, Nz 2, 1968. 

4. Shilnikov, L. P., On the works of A. G. Maiem on central motions, Matem. 

Zametki, Vol. 5, N=" 3. 1969. 
5. Beliustina, L. N. and Belykh, V. N., On the nonautonomous phase system 

of equations with a small parameter, containing invariant anchor rings and rough 
homoclinal curves. Izv, WZ, Radiofizika, vol. 15, N: 7, 1972. 



166 v. N. Belykh and Iu. S. Chertkov 

6. Beliustina,L.N. and Belykh, V.N., On the global structure of phase space 
subdivision of a particular nonautonomous system. Differentsiarnye Uravneniia, 
Vol. 9, & 4, 1973. 

7. Beliustina,L.N. and Belykh, v. N., Homoclinal structures generated by 
the simplest model of phase automatic control. Coll. : Phase Synchronization, 
Moscow,“Sviaz”, 1975. 

8. Neimark, Iu. I., On the origin of stochastic properties in dynamic systems. 
Izv. VUZ, Radiofizika, Vol. 1’7, & 4, 1974. 

9. Cartwright, M. L. and Littlewood, J. E., On nonlinear differential equa- 
tions of the second or&r: the equation y” - k (1 - ~12) y’ + y = bhk GOS (ht i- 

3, k large. J. London Math. Sot., Vol. 20, pt. 2, N: 78, 1945. 
10. Levinson, N., A second order differential equation with singular solutions. Ann. 

Math., Ser. 1, Vol.50, p 1,1949. 
11. Hayashi, C., Ueda, Y. and Kawakami, H. , Periodic solutions of Duffings 

equation with reference to doubly asymptotic solutions. Tr. Mezhdunar. Konfe- 

rentsii po Nelineinym Kolebaniiam. Vol, 2, Kiev, Izd, Inst, Matematiki Akad. 
Nauk UkrSSR, 1970. 

12. Batalova, Z. S. and Neimark, Iu. I., On a particular dynamic system of 
homoclinal structure. Theory of Oscillations, Applied Mathematics and Cyber- 

netics. Mezhvuzovskii sb., N=” 1, Izd. Gor’kovsk. Univ., 1973. 
13. Pliss, V. A . ,On the theory of invariant sets in periodic systems of differential 

equations. Differentsial’nye Uravneniia, Vol. 5, K 2, 1969. 

14. Alekseev, V. M., Quasi-stochastic oscillations and qualitative problems of celes- 

tial mechanics. g-year Mathematical college (Katsiveli, 1971). Kiev, Izd. Inst. 

Matematiki Akad.Nauk UkrSSR, 1972. 
15. S hi 1’ n i k o v , L . P., On a particular Poincar&Birkhoffproblem. Matem. sb., Vol. 74, 

N: 3, 1967. 
16. N e i m ark , I u . I. , Structure of dynamic systems motion in the neighborhood of ho- 

moclinal curve. 5-year Mathematical College(Uzhgorod,l967), Izd. Akad.Nauk 

UkrSSR, Kiev, 1968. 
17. Skriabin, B. N., Qualitative investigation of an equation of the theory of phase 

automatic frequency control. PMM Vol. 33, Nz 2, 1969. 
18. Belykh, V. N., Kiveleva, K. G. and Fraiman, L. A.,Dynamic charac- 

teristics of the scanning phase automatic frequency control system with first 

order filter. In toll. : Phase Synchronization, Moscow,“Sviaz’“, 1975. 

19. Gavrilov, N. K. and Shil’nikov, L. P.,On three-dimensional dynamic Sys- 
terns with nonrough homoclinal curve, I, II. Matem.sb. Vol. 88,Ns 8,1972 and 

vol. 90, N: 1, 1973. 

20. Morozov, A. D., On piecewise-smooth systems containing homoclinal curves. 

Tr. Mezbdunar. Konferent& po Nelineinym Kolebaniiam Vol. 2, (Kiev, 1969). 
Kiev, Izd. Inst. Matematiki Akad. Nauk UkrSSR, 1970. 

21. S hakhtarin, B. I. , Investigation of a piecewise-linear system of the phase auto- 

matic control. Radiotekhnika i Elektronika, Vol. 14, N=” 8, 1969. 

22. Safonov, V. M., On the effect of the sawtooth form of the phase detector charac- 
teristic on the phase automatic control capture band. Radiotekhnika, Vol. 24, Ng6, 

1969. Translated by J. J, D. 


